
Henson Documentation
Release 1.0.0

iHeartRadio

March 03, 2016





Contents

1 Installation 3

2 Quickstart 5

3 Running Applications 7

4 Logging 9

5 Debug Mode 11

6 Indices and tables 21

Python Module Index 23

i



ii



Henson Documentation, Release 1.0.0

Henson is a library for building services that are driven by consumers. Henson applications read from objects that
implement the Consumer Interface and provide the message received to a callback for processing. The messsage can
be processed before handing it off to the callback, and the callback’s results can be processed after they are returned
to the application.

Note: This documentation uses the async/await syntax introduced to Python 3.5 by way of PEP 492. If you
are using an older version of Python, replace async with the @asyncio.coroutine decorator and await with
yield from.

Contents 1

https://www.python.org/dev/peps/pep-0492/


Henson Documentation, Release 1.0.0

2 Contents



CHAPTER 1

Installation

You can install Henson using Pip:

$ python -m pip install henson

Warning: Henson hasn’t been uploaded to the Python Package Index yet. Until that time, it must be installed
from source.

You can also install it from source:

$ python setup.py install

3



Henson Documentation, Release 1.0.0

4 Chapter 1. Installation



CHAPTER 2

Quickstart

from henson import Abort, Application

class FileConsumer:
"""Read lines from a file."""

def __init__(self, filename):
self.filename = filename
self._file = None

def __iter__(self):
"""FileConsumer objects are iterators."""
return self

def __next__(self):
"""Return the next line of the file, if available."""
if not self._file:

self._file = open(self.filename)
try:

return next(self._file)
except StopIteration:

self._file.close()
raise Abort('Reached end of file', None)

async def read(self):
"""Return the next line in the file."""
return next(self)

async def callback(app, message):
"""Print the message retrieved from the file consumer."""
print(app.name, 'received:', message)
return message

app = Application(
__name__,
callback=callback,
consumer=FileConsumer(__file__),

)

@app.startup
async def print_header(app):

"""Print a header for the file being processed."""
print('# Begin processing', app.consumer.filename)

5



Henson Documentation, Release 1.0.0

@app.teardown
async def print_footer(app):

"""Print a footer for the file being processed."""
print('# Done processing', app.consumer.filename)

@app.message_preprocessor
async def remove_comments(app, line):

"""Abort processing of comments (lines that start with #)."""
if line.strip().startswith('#'):

raise Abort('Line is a comment', line)
return line

6 Chapter 2. Quickstart



CHAPTER 3

Running Applications

Henson provides a henson command to run your applications from the command line. To run the application defined
in the quickstart above, cd to the directory containing the module and run:

$ henson run file_printer

Henson’s CLI can also be invoked by running the installed package as a script. To avoid confusion and prevent different
installations of Henson from interfering with one another, this is the recommended way to run Henson applications:

$ python -m henson run file_printer

If a module contains only one instance of a Henson Application, python -m henson run will automatically
detect and run it. If more than one instance exists, the desired application’s name must be specified:

$ python -m henson run file_printer:app

This form always takes precedence over the former, and the henson command won’t attempt to auto-detect an
instance even if there is a problem with the name specified. If the attribute specified by the name after : is callable,
python -m henson run will call it and use the returned value as the application. Any callable specified this
way should require no arguments and return an instance of Application. Autodiscovery of callables that return
applications is not currently supported.

When developing locally, applications often need to be restarted as changes are made. To make this easier, Henson
provides a --reloader option to the run command. With this option enabled, Henson will watch an application’s
root directory and restart the application automatically when changes are detected:

$ python -m henson run file_printer --reloader

Note: The --reloader option is not recommended for production use.

It’s also possible to enable Henson’s debug mode through the --debug option:

$ python -m henson run file_printer --debug

7



Henson Documentation, Release 1.0.0

8 Chapter 3. Running Applications



CHAPTER 4

Logging

Henson applications provide a default logger. The logger returned by calling logging.getLogger() will
be used. The name of the logger is the name given to the application. Any configuration needed (e.g.,
logging.basicConfig(), logging.config.dictConfig(), etc.) should be done before the application
is started.

9

https://docs.python.org/3.5/library/logging.html#logging.getLogger
https://docs.python.org/3.5/library/logging.html#logging.basicConfig
https://docs.python.org/3.5/library/logging.config.html#logging.config.dictConfig


Henson Documentation, Release 1.0.0

10 Chapter 4. Logging



CHAPTER 5

Debug Mode

Debugging with asyncio can be tricky. Henson provides a debug mode enables asyncio’s debug mode as well as
debugging information through Henson’s logger.

Debug mode can be enabled through a configuration setting:

app.settings['DEBUG'] = True

or by providing a truthy value for debug when calling run_forever():

app.run_forever(debug=True)

Contents:

5.1 Consumer Interface

To work with Henson, a consumer must conform to the Consumer Interface. To conform to the interface, the object
must expose a coroutine() function named read.

Below is a sample implementation.

from henson import Abort, Application

class FileConsumer:
"""Read lines from a file."""

def __init__(self, filename):
self.filename = filename
self._file = None

def __iter__(self):
"""FileConsumer objects are iterators."""
return self

def __next__(self):
"""Return the next line of the file, if available."""
if not self._file:

self._file = open(self.filename)
try:

return next(self._file)
except StopIteration:

self._file.close()
raise Abort('Reached end of file', None)

11

https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine


Henson Documentation, Release 1.0.0

async def read(self):
"""Return the next line in the file."""
return next(self)

async def callback(app, message):
"""Print the message retrieved from the file consumer."""
print(app.name, 'received:', message)
return message

app = Application(
__name__,
callback=callback,
consumer=FileConsumer(__file__),

)

@app.startup
async def print_header(app):

"""Print a header for the file being processed."""
print('# Begin processing', app.consumer.filename)

@app.teardown
async def print_footer(app):

"""Print a footer for the file being processed."""
print('# Done processing', app.consumer.filename)

@app.message_preprocessor
async def remove_comments(app, line):

"""Abort processing of comments (lines that start with #)."""
if line.strip().startswith('#'):

raise Abort('Line is a comment', line)
return line

5.2 Callbacks

Henson operates on messages through a series of asyncio.coroutine() callback functions. Each callback type
serves a unique purpose.

5.2.1 callback

This is the only one of the callback settings that is required. Its purpose is to process the incoming message. If desired,
it should return the result(s) of processing the message as an iterable.

async def callback(application, message):
return ['spam']

Application('name', callback=callback)

Note: There can only be one function registered as callback.

12 Chapter 5. Debug Mode

https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine


Henson Documentation, Release 1.0.0

5.2.2 error

These callbacks are called when an exception is raised while processing a message.

app = Application('name')

@app.error
async def log_error(application, message, exception):

logger.error('spam')

Note: Exceptions raised while postprocessing a result will not be processed through these callbacks.

5.2.3 message_acknowledgement

These callbacks are intended to acknowledge that a message has been received and should not be made available to
other consumers. They run after a message and its result(s) have been fully processed.

app = Application('name')

@app.message_acknowledgement
async def acknowledge_message(application, original_message):

await original_message.acknowledge()

5.2.4 message_preprocessor

These callbacks are called as each message is first received. Any modifications they make to the message will be
reflected in what is passed to callback for processing.

app = Application('name')

@app.message_preprocessor
async def add_process_id(application, message):

message['pid'] = os.getpid()
return message

5.2.5 result_postprocessor

These callbacks will operate on the result(s) of callback. Each callback is applied to each result.

app = Application('name')

@app.result_postprocessor
async def store_result(application, result):

with open('/tmp/result', 'w') as f:
f.write(result)

5.2.6 startup

These callbacks will run as an application is starting.

5.2. Callbacks 13



Henson Documentation, Release 1.0.0

app = Application('name')

@app.startup
async def connect_to_database(application):

await db.connect(application.settings['DB_HOST'])

5.2.7 teardown

These callbacks will run as an application is shutting down.

app = Application('name')

@app.teardown
async def disconnect_from_database(application):

await db.close()

5.3 Extensions

Extensions provide additional functionality to applications. Configuration management is shared between applications
and extensions in a central location.

5.3.1 Using Extensions

from henson import Application
from henson_sqlite import SQLite

app = Application(__name__)
db = SQLite(app)

db.connection.execute('SELECT 1;')

5.3.2 Developing Extensions

Henson provides an Extension base class to make extension development easier.

from henson import Extension

class SQLite(Extension):
DEFAULT_SETTINGS = {'SQLITE_CONNECTION_STRING': ':memory:'}

def __init__(self, app=None):
self._connection = None
super().__init__(app)

@property
def connection(self):

if not self._connection:
conn_string = self.app.settings['SQLITE_CONNECTION_STRING']
self._connection = sqlite3.connect(conn_string)

return self._connection

The Extension class provides two special attributes that are meant to be overridden:

14 Chapter 5. Debug Mode



Henson Documentation, Release 1.0.0

• DEFAULT_SETTINGS provides default values for an extension’s settings during the init_app() step.
When a value is used by an extension and has a sensible default, it should be stored here (e.g., a database
hostname).

• REQUIRED_SETTINGS provides a list of keys that are checked for existence during the init_app() step.
If one or more required settings are not set on the application instance assigned to the extension, a KeyError
is raised. Extensions should set this when a value is required but has no default (e.g., a database password).

5.3.3 Available Extensions

Several extensions are available for use:

• Henson-AMQP

• Henson-Database

• Henson-Logging

5.4 contrib Packages

While it is possible to build your own plugins, the Henson contrib package contains those that we think will most
enhance your application.

5.4.1 Retry

Retry is a plugin to add the ability for Henson applications to automatically retry messages that fail to process.

Warning: Retry registers itself as an error callback on the Application instance. When doing so, it inserts
itself at the beginning of the list of error callbacks. It does this so that it can prevent other callbacks from running.
If you have an error callback that you want to run even when retrying a message, you will need to manually inject
it into the list of error callbacks after initializing Retry.

Configuration

Retry provides a couple of settings to control how many times a message will be retried. RETRY_THESHOLD and
RETRY_TIMEOUT work in tandem. If values are specified for both, whichever limit is reached first will cause Henson
to stop retrying the message. By default, Henson will try forever (yes, this is literally insane).

RETRY_BACKOFFA number that, if provided, will be used in conjunction with the number of retry attempts already
made to calculate the total delay for the current retry. Defaults to 1.

RETRY_CALLBACKA coroutine that encapsulates the functionality needed to retry the message. TypeError will be
raised if the callback isn’t a coroutine().

RETRY_DELAYThe number of seconds to wait before scheduling a retry. If RETRY_BACKOFF has a value
greater than 1, the delay will increase between each retry. Defaults to 0.

RETRY_EXCEPTIONSAn exception or tuple of exceptions that will cause Henson to retry the message. Defaults to
RetryableException.

RETRY_THRESHOLDThe maximum number of times that a Henson application will try to process a message before
marking it as a failure. if set to 0, the message will not be retried. If set to None, the limit will be
controlled by RETRY_TIMEOUT. Defaults to None.

RETRY_TIMEOUTThe maximum number of seconds during which a message can be retried. If set to None, the
limit will be controlled by RETRY_THRESHOLD. Defaults to None.

5.4. contrib Packages 15

https://github.com/iheartradio/Henson-AMQP
https://github.com/iheartradio/Henson-Database
https://github.com/iheartradio/Henson-Logging
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine


Henson Documentation, Release 1.0.0

Usage

Application definition:

from henson import Application
from henson.contrib.retry import Retry

async def print_message(app, message):
print(message)

app = Application('retryable-application', callback=my_callback)
app.settings['RETRY_CALLBACK'] = print_message
Retry(app)

Somwhere inside the application:

from henson.contrib.retry import RetryableException

async def my_callback(app, message):
raise RetryableException

API

class henson.contrib.retry.Retry(app=None)
A class that adds retries to an application.

init_app(app)
Initialize an Application instance.

Parameters app (henson.base.Application) – Application instance to be initialized.

Raises

• TypeError – If the callback isn’t a coroutine.

• ValueError – If the delay or backoff is negative.

class henson.contrib.retry.RetryableException
Exception to be raised when a message should be retried.

5.5 API

Here’s the public API for Henson.

5.5.1 Application

class henson.base.Application(name, settings=None, *, consumer=None, callback=None)
A service application.

Each message received from the consumer will be passed to the callback.

Parameters

• name (str) – The name of the application.

• settings (Optional[object]) – An object with attributed-based settings.

16 Chapter 5. Debug Mode

https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/stdtypes.html#str


Henson Documentation, Release 1.0.0

• consumer (optional) – Any object that is an iterator or an iterable and yields instances
of any type that is supported by callback. While this isn’t required, it must be provided
before the application can be run.

• callback (Optional[asyncio.coroutine]) – A callable object that takes two ar-
guments, an instance of henson.base.Application and the (possibly) preprocessed
incoming message. While this isn’t required, it must be provided before the application can
be run.

error(callback)
Register an error callback.

Parameters callback (asyncio.coroutine) – A callable object that takes three argu-
ments: an instance of henson.base.Application, the incoming message, and the
exception that was raised. It will be called any time there is an exception while reading a
message from the queue.

Returns The callback.

Return type asyncio.coroutine

Raises TypeError – If the callback isn’t a coroutine.

message_acknowledgement(callback)
Register a message acknowledgement callback.

Parameters callback (asyncio.coroutine) – A callable object that takes two argu-
ments: an instance of henson.base.Application and the original incoming message
as its only argument. It will be called once a message has been fully processed.

Returns The callback.

Return type asyncio.coroutine

Raises TypeError – If the callback isn’t a coroutine.

message_preprocessor(callback)
Register a message preprocessing callback.

Parameters callback (asyncio.coroutine) – A callable object that takes two argu-
ments: an instance of henson.base.Application and the incoming message. It will
be called for each incoming message with its result being passed to callback.

Returns The callback.

Return type asyncio.coroutine

Raises TypeError – If the callback isn’t a coroutine.

result_postprocessor(callback)
Register a result postprocessing callback.

Parameters callback (asyncio.coroutine) – A callable object that takes two argu-
ments: an instance of henson.base.Application and a result of processing the in-
coming message. It will be called for each result returned from callback.

Returns The callback.

Return type asyncio.coroutine

Raises TypeError – If the callback isn’t a coroutine.

run_forever(num_workers=1, loop=None, debug=False)
Consume from the consumer until interrupted.

5.5. API 17

https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/exceptions.html#TypeError


Henson Documentation, Release 1.0.0

Parameters

• num_workers (Optional[int]) – The number of asynchronous tasks to use to pro-
cess messages received through the consumer. Defaults to 1.

• loop (Optional[asyncio.asyncio.BaseEventLoop]) – An event loop that,
if provided, will be used for running the application. If none is provided, the default event
loop will be used.

• debug (Optional[bool]) – Whether or not to run with debug mode enabled. Defaults
to True.

Raises TypeError – If the consumer is None or the callback isn’t a coroutine.

startup(callback)
Register a startup callback.

Parameters callback (asyncio.coroutine) – A callable object that takes an instance
of Application as its only argument. It will be called once when the application first
starts up.

Returns The callback.

Return type asyncio.coroutine

Raises TypeError – If the callback isn’t a coroutine.

teardown(callback)
Register a teardown callback.

Parameters callback (asyncio.coroutine) – A callable object that takes an instance of
Application as its only argument. It will be called once when the application is shutting
down.

Returns The callback.

Return type asyncio.coroutine

Raises TypeError – If the callback isn’t a coroutine.

5.5.2 Configuration

class henson.config.Config
Custom mapping used to extend and override an app’s settings.

from_mapping(mapping)
Convert a mapping into settings.

Uppercase keys of the specified mapping will be used to extend and update the existing settings.

Parameters mapping (dict) – A mapping encapsulating settings.

from_object(obj)
Convert an object into settings.

Uppercase attributes of the specified object will be used to extend and update the existing settings.

Parameters obj – An object encapsulating settings. This will typically be a module or class.

18 Chapter 5. Debug Mode

https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine
https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/stdtypes.html#dict


Henson Documentation, Release 1.0.0

5.5.3 Exceptions

Custom exceptions used by Henson.

exception henson.exceptions.Abort(reason, message)
An exception that signals to Henson to stop processing a message.

When this exception is caught by Henson it will immediately stop processing the message. None of the remain-
ing callbacks will be called.

If the exception is caught while processing a result, that result will no longer be processed. Any other results
generated by the same message will still be processed.

Parameters

• reason (str) – The reason the message is being aborted. It should be in the form of
“noun.verb” (e.g., “provider.ignored”).

• message – The message that is being aborted. Usually this will be the incoming message,
but it can also be the result.

5.5.4 Extensions

class henson.extensions.Extension(app=None)
A base class for Hension extensions.

Parameters app (Optional[henson.base.Application]) – An application instance that
has an attribute named settings that contains a mapping of settings to interact with a database.

DEFAULT_SETTINGS
A dict of default settings for the extension.

When a setting is not specified by the application instance and has a default specified, the default value
will be used. Extensions should define this where appropriate. Defaults to {}.

REQUIRED_SETTINGS
An iterable of required settings for the extension.

When an extension has required settings that do not have default values, their keys may be specified here.
Upon extension initialization, an exception will be raised if a value is not set for each key specified in this
list. Extensions should define this where appropriate. Defaults to ().

app
Return the registered app.

init_app(app)
Initialize the application.

In addition to associating the extension’s default settings with the application, this method will also check
for the extension’s required settings.

Parameters app (henson.base.Application) – An application instance that will be ini-
tialized.

5.6 Changelog

5.6.1 Version 1.0.0

Released 2016-03-01

5.6. Changelog 19

https://docs.python.org/3.5/library/stdtypes.html#str


Henson Documentation, Release 1.0.0

• Initial release

Todo

Testing

20 Chapter 5. Debug Mode



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21



Henson Documentation, Release 1.0.0

22 Chapter 6. Indices and tables



Python Module Index

h
henson.exceptions, 19

23



Henson Documentation, Release 1.0.0

24 Python Module Index



Index

A
Abort, 19
app (henson.extensions.Extension attribute), 19
Application (class in henson.base), 16

C
Config (class in henson.config), 18

D
DEFAULT_SETTINGS (henson.extensions.Extension at-

tribute), 19

E
error() (henson.base.Application method), 17
Extension (class in henson.extensions), 19

F
from_mapping() (henson.config.Config method), 18
from_object() (henson.config.Config method), 18

H
henson.exceptions (module), 19

I
init_app() (henson.contrib.retry.Retry method), 16
init_app() (henson.extensions.Extension method), 19

M
message_acknowledgement() (henson.base.Application

method), 17
message_preprocessor() (henson.base.Application

method), 17

R
REQUIRED_SETTINGS (henson.extensions.Extension

attribute), 19
result_postprocessor() (henson.base.Application

method), 17
Retry (class in henson.contrib.retry), 16

RetryableException (class in henson.contrib.retry), 16
run_forever() (henson.base.Application method), 17

S
startup() (henson.base.Application method), 18

T
teardown() (henson.base.Application method), 18

25


	Installation
	Quickstart
	Running Applications
	Logging
	Debug Mode
	Indices and tables
	Python Module Index

