

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Henson 1.1.0 documentation

Henson

Henson is a library for building services that are driven by consumers. Henson
applications read from objects that implement the Consumer Interface and provide
the message received to a callback for processing. The messsage can be
processed before handing it off to the callback, and the callback’s results can
be processed after they are returned to the application.

Note

This documentation uses the async/await syntax introduced to Python
3.5 by way of PEP 492 [https://www.python.org/dev/peps/pep-0492/]. If you
are using an older version of Python, replace async with the
@asyncio.coroutine decorator and await with yield from.

Installation

You can install Henson using Pip:

$ python -m pip install henson

You can also install it from source:

$ python setup.py install

Quickstart

from henson import Abort, Application

class FileConsumer:
 """Read lines from a file."""

 def __init__(self, filename):
 self.filename = filename
 self._file = None

 def __iter__(self):
 """FileConsumer objects are iterators."""
 return self

 def __next__(self):
 """Return the next line of the file, if available."""
 if not self._file:
 self._file = open(self.filename)
 try:
 return next(self._file)
 except StopIteration:
 self._file.close()
 raise Abort('Reached end of file', None)

 async def read(self):
 """Return the next line in the file."""
 return next(self)

async def callback(app, message):
 """Print the message retrieved from the file consumer."""
 print(app.name, 'received:', message)
 return message

app = Application(
 __name__,
 callback=callback,
 consumer=FileConsumer(__file__),
)

@app.startup
async def print_header(app):
 """Print a header for the file being processed."""
 print('# Begin processing', app.consumer.filename)

@app.teardown
async def print_footer(app):
 """Print a footer for the file being processed."""
 print('# Done processing', app.consumer.filename)

@app.message_preprocessor
async def remove_comments(app, line):
 """Abort processing of comments (lines that start with #)."""
 if line.strip().startswith('#'):
 raise Abort('Line is a comment', line)
 return line

Running Applications

Henson provides a henson command to run your applications from the command
line. To run the application defined in the quickstart above, cd to the
directory containing the module and run:

$ henson run file_printer

Henson’s CLI can also be invoked by running the installed package as a script.
To avoid confusion and prevent different installations of Henson from
interfering with one another, this is the recommended way to run Henson
applications:

$ python -m henson run file_printer

If a module contains only one instance of a Henson
Application, python -m henson run will automatically
detect and run it. If more than one instance exists, the desired application’s
name must be specified:

$ python -m henson run file_printer:app

This form always takes precedence over the former, and the henson command
won’t attempt to auto-detect an instance even if there is a problem with the
name specified. If the attribute specified by the name after : is callable,
python -m henson run will call it and use the returned value as the
application. Any callable specified this way should require no arguments and
return an instance of Application. Autodiscovery of
callables that return applications is not currently supported.

More detailed information about Henson’s command line interface can be found in
Command Line Interface.

Logging

Henson applications provide a default logger. The logger returned by calling
logging.getLogger() [https://docs.python.org/3.5/library/logging.html#logging.getLogger] will be used. The name of the logger is the name
given to the application. Any configuration needed (e.g.,
logging.basicConfig() [https://docs.python.org/3.5/library/logging.html#logging.basicConfig], logging.config.dictConfig() [https://docs.python.org/3.5/library/logging.config.html#logging.config.dictConfig], etc.) should be
done before the application is started.

Debug Mode

Debugging with asyncio can be tricky. Henson provides a debug mode enables
asyncio’s debug mode as well as debugging information through Henson’s logger.

Debug mode can be enabled through a configuration setting:

app.settings['DEBUG'] = True

or by providing a truthy value for debug when calling
run_forever():

app.run_forever(debug=True)

Contents:

	Consumer Interface

	Callbacks

	Command Line Interface

	Extensions

	contrib Packages

	API

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

Consumer Interface

To work with Henson, a consumer must conform to the Consumer Interface. To
conform to the interface, the object must expose a coroutine() [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]
function named read.

Below is a sample implementation.

from henson import Abort, Application

class FileConsumer:
 """Read lines from a file."""

 def __init__(self, filename):
 self.filename = filename
 self._file = None

 def __iter__(self):
 """FileConsumer objects are iterators."""
 return self

 def __next__(self):
 """Return the next line of the file, if available."""
 if not self._file:
 self._file = open(self.filename)
 try:
 return next(self._file)
 except StopIteration:
 self._file.close()
 raise Abort('Reached end of file', None)

 async def read(self):
 """Return the next line in the file."""
 return next(self)

async def callback(app, message):
 """Print the message retrieved from the file consumer."""
 print(app.name, 'received:', message)
 return message

app = Application(
 __name__,
 callback=callback,
 consumer=FileConsumer(__file__),
)

@app.startup
async def print_header(app):
 """Print a header for the file being processed."""
 print('# Begin processing', app.consumer.filename)

@app.teardown
async def print_footer(app):
 """Print a footer for the file being processed."""
 print('# Done processing', app.consumer.filename)

@app.message_preprocessor
async def remove_comments(app, line):
 """Abort processing of comments (lines that start with #)."""
 if line.strip().startswith('#'):
 raise Abort('Line is a comment', line)
 return line

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

Callbacks

Henson operates on messages through a series of asyncio.coroutine() [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]
callback functions. Each callback type serves a unique purpose.

callback

This is the only one of the callback settings that is required. Its purpose is
to process the incoming message. If desired, it should return the result(s) of
processing the message as an iterable.

async def callback(application, message):
 return ['spam']

Application('name', callback=callback)

Note

There can only be one function registered as callback.

error

These callbacks are called when an exception is raised while processing a
message.

app = Application('name')

@app.error
async def log_error(application, message, exception):
 logger.error('spam')

Note

Exceptions raised while postprocessing a result will not be processed
through these callbacks.

message_acknowledgement

These callbacks are intended to acknowledge that a message has been received
and should not be made available to other consumers. They run after a message
and its result(s) have been fully processed.

app = Application('name')

@app.message_acknowledgement
async def acknowledge_message(application, original_message):
 await original_message.acknowledge()

message_preprocessor

These callbacks are called as each message is first received. Any modifications
they make to the message will be reflected in what is passed to callback
for processing.

app = Application('name')

@app.message_preprocessor
async def add_process_id(application, message):
 message['pid'] = os.getpid()
 return message

result_postprocessor

These callbacks will operate on the result(s) of callback. Each callback is
applied to each result.

app = Application('name')

@app.result_postprocessor
async def store_result(application, result):
 with open('/tmp/result', 'w') as f:
 f.write(result)

startup

These callbacks will run as an application is starting.

app = Application('name')

@app.startup
async def connect_to_database(application):
 await db.connect(application.settings['DB_HOST'])

teardown

These callbacks will run as an application is shutting down.

app = Application('name')

@app.teardown
async def disconnect_from_database(application):
 await db.close()

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

Command Line Interface

Henson provides the following command line interface.

henson

usage: henson [-h] [--version] [-a APP] {run} ...

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

	
-a, --app

	the path to the application to run

henson run

Import and run an application.

usage: henson run [-h] [--verbose | --quiet] [-r] [-w WORKERS] [-d]
 application-path

	
application-path

	the path to the application to run

	
-h, --help

	show this help message and exit

	
--verbose, -v

	verbose mode

	
--quiet, -q

	quiet mode

	
-r, --reloader

	reload the application on changes

	
-w <workers>, --workers <workers>

	the number of asynchronous tasks to run

	
-d, --debug

	enable debug mode

Further Details

When developing locally, applications often need to be restarted as changes are
made. To make this easier, Henson provides a --reloader option to the
run command. With this option enabled, Henson will watch an application’s
root directory and restart the application automatically when changes are
detected:

$ python -m henson run file_printer --reloader

Note

The --reloader option is not recommended for production use.

It’s also possible to enable Henson’s Debug Mode through the --debug
option:

$ python -m henson run file_printer --debug

Note

The --debug option is not recommended for production use.

This will also enable the reloader.

Extending the Command Line

For information about how to extension Henson’s command line interface, see
Extending the Command Line.

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

Extensions

Extensions provide additional functionality to applications. Configuration
management is shared between applications and extensions in a central location.

Using Extensions

from henson import Application
from henson_sqlite import SQLite

app = Application(__name__)
db = SQLite(app)

db.connection.execute('SELECT 1;')

Developing Extensions

Henson provides an Extension base class to make
extension development easier.

from henson import Extension

class SQLite(Extension):
 DEFAULT_SETTINGS = {'SQLITE_CONNECTION_STRING': ':memory:'}

 def __init__(self, app=None):
 self._connection = None
 super().__init__(app)

 @property
 def connection(self):
 if not self._connection:
 conn_string = self.app.settings['SQLITE_CONNECTION_STRING']
 self._connection = sqlite3.connect(conn_string)
 return self._connection

The Extension class provides two special attributes
that are meant to be overridden:

	DEFAULT_SETTINGS provides default values
for an extension’s settings during the
init_app() step. When a value is used by
an extension and has a sensible default, it should be stored here (e.g., a
database hostname).

	REQUIRED_SETTINGS provides a list of
keys that are checked for existence during the
init_app() step. If one or more required
settings are not set on the application instance assigned to the extension, a
KeyError is raised. Extensions should set this when a value is required
but has no default (e.g., a database password).

Extending the Command Line

Henson offers an extensible command line interface. To register your own
commands, use register_commands(). Any function passed to it
will have its usage created directly from its signature. During the course of
initializing the application for use with the extension (i.e.,
init_app()), Henson will check for a method
on the extension’s instance named register_cli and call it. If you place
any calls to register_commands() inside it, the command line
interface will be extended automatically.

In order to access the new commands, the henson command line utility must
be given a reference to an Application. This is done
through the --app argument:

$ henson --app APP_PATH

Note

For details about the syntax to use when passing a reference to an
Application, see Running Applications.

A positional argument in the Python function will result in a required
positional argument in the command:

def trash(grouch):
 pass

$ henson --app APP_PATH NAMESPACE trash GROUCH

A keyword argument in the Python function will result in a positional argument
in the command with a default value to be used when the argument is omitted:

def trash(grouch='oscar'):
 pass

$ henson --app APP_PATH NAMESPACE trash [GROUCH]

A keyword-only argument in the Python function will result in an optional
argument in the command:

def trash(*, grouch='oscar'):
 pass

$ henson --app APP_PATH NAMESPACE trash [--grouch GROUCH]

By default, all optional arguments will have a flag that matches the function
argument’s name. When no other optional arguments start with the same
character, a single-character abbreviated flag can also be used.

$ henson --app APP_PATH NAMESPACE trash [-g GROUCH]

The trash function can then be registered with the CLI:

register_commands('sesame', [trash])

$ henson --app APP_PATH sesame trash --help

Additionally, if a command includes a quiet or verbose argument, it
will automatically receive the count of the number of times it was specified
(e.g., -v will have the value 1, -vv will have the value 2).
When both arguments are included, they will be added as a mutually exclusive
group.

Note

Due to how argparse [https://docs.python.org/3.5/library/argparse.html#argparse.ArgumentParser.add_argument]
handles argument counts, quiet and verbose will be set to None
rather than 0 when the flag isn’t specified when the command is
invoked.

$ henson --app APP_PATH sesame trash -vvvv
$ henson --app APP_PATH sesame trash --quiet

Available Extensions

Several extensions are available for use:

	Henson-AMQP [https://henson-amqp.readthedocs.io]

	Henson-Database [https://henson-database.readthedocs.io]

	Henson-Logging [https://henson-logging.readthedocs.io]

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

contrib Packages

While it is possible to build your own plugins, the Henson contrib package
contains those that we think will most enhance your application.

	Retry

	Sphinx

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

 	contrib Packages

Retry

Retry is a plugin to add the ability for Henson applications to automatically
retry messages that fail to process.

Warning

Retry registers itself as an error callback on the
Application instance. When doing so, it inserts itself
at the beginning of the list of error callbacks. It does this so that it can
prevent other callbacks from running.

If you have an error callback that you want to run even when retrying a
message, you will need to manually inject it into the list of error
callbacks after initializing Retry.

Configuration

Retry provides a couple of settings to control how many times a message will be
retried. RETRY_THESHOLD and RETRY_TIMEOUT work in tandem. If values are
specified for both, whichever limit is reached first will cause Henson to stop
retrying the message. By default, Henson will try forever (yes, this is
literally insane).

	RETRY_BACKOFF
	A number that, if provided, will be used in
conjunction with the number of retry attempts
already made to calculate the total delay for the
current retry. Defaults to 1.

	RETRY_CALLBACK
	A coroutine that encapsulates the functionality
needed to retry the message. TypeError will be
raised if the callback isn’t a
coroutine() [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine].

	RETRY_DELAY
	The number of seconds to wait before scheduling a
retry. If RETRY_BACKOFF has a value greater than
1, the delay will increase between each retry.
Defaults to 0.

	RETRY_EXCEPTIONS
	An exception or tuple of exceptions that will cause
Henson to retry the message. Defaults to
RetryableException.

	RETRY_THRESHOLD
	The maximum number of times that a Henson
application will try to process a message before
marking it as a failure. if set to 0, the message
will not be retried. If set to None, the limit will
be controlled by RETRY_TIMEOUT. Defaults to
None.

	RETRY_TIMEOUT
	The maximum number of seconds during which a message
can be retried. If set to None, the limit will be
controlled by RETRY_THRESHOLD. Defaults to None.

Usage

Application definition:

from henson import Application
from henson.contrib.retry import Retry

async def print_message(app, message):
 print(message)

app = Application('retryable-application', callback=my_callback)
app.settings['RETRY_CALLBACK'] = print_message
Retry(app)

Somwhere inside the application:

from henson.contrib.retry import RetryableException

async def my_callback(app, message):
 raise RetryableException

API

	
class henson.contrib.retry.Retry(app=None)[source]

	A class that adds retries to an application.

	
init_app(app)[source]

	Initialize an Application instance.

	Parameters:	app (henson.base.Application) – Application instance to be
initialized.

	Raises:	
	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

	ValueError [https://docs.python.org/3.5/library/exceptions.html#ValueError] –
If the delay or backoff is negative.

	
class henson.contrib.retry.RetryableException[source]

	Exception to be raised when a message should be retried.

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

 	contrib Packages

Sphinx

The Sphinx contrib plugin adds a directive that can be used to document
extensions to the Henson command line interface.

	
class henson.contrib.sphinx.HensonCLIDirective(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)[source]

	A Sphinx directive that can be used to document a CLI extension.

This class wraps around
autoprogram [https://pythonhosted.org/sphinxcontrib-autoprogram/]
to generate Sphinx documentation for extensions that extend the
Henson CLI.

.. hensoncli:: henson_database:Database
 :start_command: db

New in version 1.1.0.

For full details of the options support by the hensoncli directive, please
refer to the
sphinxcontrib-autoprogram documentation [https://pythonhosted.org/sphinxcontrib-autoprogram/#additional-options-for-autoprogram].

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Henson 1.1.0 documentation

API

Here’s the public API for Henson.

Application

	
class henson.base.Application(name, settings=None, *, consumer=None, callback=None)[source]

	A service application.

Each message received from the consumer will be passed to the
callback.

	Parameters:	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of the application.

	settings (Optional[object]) – An object with attributed-based
settings.

	consumer (optional) – Any object that is an iterator or an
iterable and yields instances of any type that is supported
by callback. While this isn’t required, it must be
provided before the application can be run.

	callback (Optional[asyncio.coroutine]) – A callable object that
takes two arguments, an instance of
henson.base.Application and the (possibly)
preprocessed incoming message. While this isn’t required,
it must be provided before the application can be run.

	
error(callback)[source]

	Register an error callback.

	Parameters:	callback (asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]) – A callable object that takes
three arguments: an instance of
henson.base.Application, the incoming message,
and the exception that was raised. It will be called any
time there is an exception while reading a message from
the queue.

	Returns:	The callback.

	Return type:	asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

	
message_acknowledgement(callback)[source]

	Register a message acknowledgement callback.

	Parameters:	callback (asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]) – A callable object that takes
two arguments: an instance of
henson.base.Application and the original
incoming message as its only argument. It will be called
once a message has been fully processed.

	Returns:	The callback.

	Return type:	asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

	
message_preprocessor(callback)[source]

	Register a message preprocessing callback.

	Parameters:	callback (asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]) – A callable object that takes
two arguments: an instance of
henson.base.Application and the incoming
message. It will be called for each incoming message
with its result being passed to callback.

	Returns:	The callback.

	Return type:	asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

	
result_postprocessor(callback)[source]

	Register a result postprocessing callback.

	Parameters:	callback (asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]) – A callable object that takes
two arguments: an instance of
henson.base.Application and a result of
processing the incoming message. It will be called for
each result returned from callback.

	Returns:	The callback.

	Return type:	asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

	
run_forever(num_workers=1, loop=None, debug=False)[source]

	Consume from the consumer until interrupted.

	Parameters:	
	num_workers (Optional[int]) – The number of asynchronous
tasks to use to process messages received through the
consumer. Defaults to 1.

	loop (Optional[asyncio.asyncio.BaseEventLoop]) – An event
loop that, if provided, will be used for running the
application. If none is provided, the default event loop
will be used.

	debug (Optional[bool]) – Whether or not to run with debug
mode enabled. Defaults to True.

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the consumer is None or the callback isn’t a
coroutine.

	
startup(callback)[source]

	Register a startup callback.

	Parameters:	callback (asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]) – A callable object that takes
an instance of Application as its
only argument. It will be called once when the
application first starts up.

	Returns:	The callback.

	Return type:	asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

	
teardown(callback)[source]

	Register a teardown callback.

	Parameters:	callback (asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]) – A callable object that takes
an instance of Application as its
only argument. It will be called once when the
application is shutting down.

	Returns:	The callback.

	Return type:	asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]

	Raises:	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] –
If the callback isn’t a coroutine.

Command Line Interface

Collection of Henson CLI tasks.

	
henson.cli.register_commands(namespace, functions, namespace_kwargs=None, func_kwargs=None)[source]

	Register commands with the henson CLI.

The signature of each function provided through functions will
be mapped to its command’s interface. Any positional arguments in
the function’s signature will become required positional arguments
to the command. Keyword arguments in the signature will also become
positional arguments, although they will use the default value from
the signature when not specified on the command line. Keyword-only
arguments in the signature will become optional arguments on the
command line.

	Parameters:	
	namespace (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – A name representing the group of commands. The
namespace is required to access the commands being added.

	functions (List[callable]) – A list of callables that are used to
create subcommands. More details can be found in the
documentation for add_commands() [https://argh.readthedocs.io/en/latest/reference.html#argh.assembling.add_commands].

Note

This function is a wrapper around
add_commands() [https://argh.readthedocs.io/en/latest/reference.html#argh.assembling.add_commands]. Please refer to its
documentation for any arguments not explained here.

New in version 1.1.0.

Configuration

	
class henson.config.Config[source]

	Custom mapping used to extend and override an app’s settings.

	
from_mapping(mapping)[source]

	Convert a mapping into settings.

Uppercase keys of the specified mapping will be used to extend
and update the existing settings.

	Parameters:	mapping (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – A mapping encapsulating settings.

	
from_object(obj)[source]

	Convert an object into settings.

Uppercase attributes of the specified object will be used to
extend and update the existing settings.

	Parameters:	obj – An object encapsulating settings. This will typically
be a module or class.

Exceptions

Custom exceptions used by Henson.

	
exception henson.exceptions.Abort(reason, message)[source]

	An exception that signals to Henson to stop processing a message.

When this exception is caught by Henson it will immediately stop
processing the message. None of the remaining callbacks will be
called.

If the exception is caught while processing a result, that result
will no longer be processed. Any other results generated by the same
message will still be processed.

	Parameters:	
	reason (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The reason the message is being aborted. It should
be in the form of “noun.verb” (e.g., “provider.ignored”).

	message – The message that is being aborted. Usually this will be
the incoming message, but it can also be the result.

Extensions

	
class henson.extensions.Extension(app=None)[source]

	A base class for Hension extensions.

	Parameters:	app (Optional[henson.base.Application]) – An application instance
that has an attribute named settings that contains a mapping
of settings to interact with a database.

	
DEFAULT_SETTINGS

	A dict of default settings for the extension.

When a setting is not specified by the application instance and
has a default specified, the default value will be used.
Extensions should define this where appropriate. Defaults to
{}.

	
REQUIRED_SETTINGS

	An iterable of required settings for the extension.

When an extension has required settings that do not have default
values, their keys may be specified here. Upon extension
initialization, an exception will be raised if a value is not
set for each key specified in this list. Extensions should
define this where appropriate. Defaults to ().

	
app

	Return the registered app.

	
init_app(app)[source]

	Initialize the application.

In addition to associating the extension’s default settings with
the application, this method will also check for the extension’s
required settings.

	Parameters:	app (henson.base.Application) – An application instance that
will be initialized.

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Henson 1.1.0 documentation

Changelog

Version 1.1.0

Released 2016-11-11

	Add henson.cli.register_commands to extend the command line interface

	Messages are logged using logging.DEBUG instead of logging.INFO

	Calls to print in henson.cli.run are updated to app.logger.info

	References to objects used by henson.Application are removed once they
are no longer needed to allow the memory to be freed up before the next
message is received.

	uvloop [https://uvloop.readthedocs.io] will be used for the event loop if it’s installed.

	Automatically register extensions to a registry on the application

	Add hensoncli Sphinx directive to document extensions to the command line
interface

	henson.cli.run and any command line extensions that request it support
quiet and verbose flags to set verbosity

Version 1.0.0

Released 2016-03-01

	Initial release

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Henson 1.1.0 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 henson	

 	
 	
 henson.cli	

 	
 	
 henson.exceptions	

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Henson 1.1.0 documentation

Index

 Symbols
 | A
 | C
 | D
 | E
 | F
 | H
 | I
 | M
 | R
 | S
 | T

Symbols

 	

 	
 --quiet, -q

 	

 	henson-run command line option

 	
 --verbose, -v

 	

 	henson-run command line option

 	
 --version

 	

 	henson command line option

 	
 -a, --app

 	

 	henson command line option

 	

 	
 -d, --debug

 	

 	henson-run command line option

 	
 -h, --help

 	

 	henson command line option

 	henson-run command line option

 	
 -r, --reloader

 	

 	henson-run command line option

 	
 -w <workers>, --workers <workers>

 	

 	henson-run command line option

A

 	

 	Abort

 	app (henson.extensions.Extension attribute)

 	

 	Application (class in henson.base)

 	
 application-path

 	

 	henson-run command line option

C

 	

 	Config (class in henson.config)

D

 	

 	DEFAULT_SETTINGS (henson.extensions.Extension attribute)

E

 	

 	error() (henson.base.Application method)

 	

 	Extension (class in henson.extensions)

F

 	

 	from_mapping() (henson.config.Config method)

 	

 	from_object() (henson.config.Config method)

H

 	

 	
 henson command line option

 	

 	--version

 	-a, --app

 	-h, --help

 	
 henson-run command line option

 	

 	--quiet, -q

 	--verbose, -v

 	-d, --debug

 	-h, --help

 	-r, --reloader

 	-w <workers>, --workers <workers>

 	application-path

 	henson.cli (module)

 	

 	henson.exceptions (module)

 	HensonCLIDirective (class in henson.contrib.sphinx)

I

 	

 	init_app() (henson.contrib.retry.Retry method)

 	

 	(henson.extensions.Extension method)

M

 	

 	message_acknowledgement() (henson.base.Application method)

 	

 	message_preprocessor() (henson.base.Application method)

R

 	

 	register_commands() (in module henson.cli)

 	REQUIRED_SETTINGS (henson.extensions.Extension attribute)

 	result_postprocessor() (henson.base.Application method)

 	

 	Retry (class in henson.contrib.retry)

 	RetryableException (class in henson.contrib.retry)

 	run_forever() (henson.base.Application method)

S

 	

 	startup() (henson.base.Application method)

T

 	

 	teardown() (henson.base.Application method)

 Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

 _modules/henson/config.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.config

"""A custom configuration."""

__all__ = ('Config',)

[docs]class Config(dict):
 """Custom mapping used to extend and override an app's settings."""

[docs] def from_mapping(self, mapping):
 """Convert a mapping into settings.

 Uppercase keys of the specified mapping will be used to extend
 and update the existing settings.

 Args:
 mapping (dict): A mapping encapsulating settings.
 """
 for key, value in mapping.items():
 self[key] = value

[docs] def from_object(self, obj):
 """Convert an object into settings.

 Uppercase attributes of the specified object will be used to
 extend and update the existing settings.

 Args:
 obj: An object encapsulating settings. This will typically
 be a module or class.
 """
 for key in dir(obj):
 if key.isupper():
 self[key] = getattr(obj, key)

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_modules/henson/cli.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.cli

"""Collection of Henson CLI tasks."""

from argparse import Action
import asyncio
from collections import Counter
from copy import deepcopy
from contextlib import suppress
from functools import wraps
from importlib import find_loader, import_module
import inspect
import logging
import os
import sys
from threading import Thread

from argh import ArghParser, CommandError
from argh.decorators import arg, expects_obj
from watchdog.events import PatternMatchingEventHandler
from watchdog.observers import Observer

from . import __version__
from .base import Application

__all__ = ('register_commands',)

[docs]def register_commands(namespace, functions, namespace_kwargs=None,
 func_kwargs=None):
 """Register commands with the henson CLI.

 The signature of each function provided through ``functions`` will
 be mapped to its command's interface. Any positional arguments in
 the function's signature will become required positional arguments
 to the command. Keyword arguments in the signature will also become
 positional arguments, although they will use the default value from
 the signature when not specified on the command line. Keyword-only
 arguments in the signature will become optional arguments on the
 command line.

 Args:
 namespace (str): A name representing the group of commands. The
 namespace is required to access the commands being added.
 functions (List[callable]): A list of callables that are used to
 create subcommands. More details can be found in the
 documentation for :func:`~argh.assembling.add_commands`.

 .. note::

 This function is a wrapper around
 :func:`~argh.assembling.add_commands`. Please refer to its
 documentation for any arguments not explained here.

 .. versionadded:: 1.1.0
 """
 commands = []

 if func_kwargs is None:
 func_kwargs = {}

 for function in functions:
 # Inspect the function first. While everything it returns can be
 # captured from the function object itself, the function will be
 # decorated by the code below, altering its signature. Using
 # inspect here will capture a snapshot that can be used without
 # alteration.
 spec = inspect.getfullargspec(function)

 # app is registered as an argument to the henson entry point
 # directly. If the function accepts it as an argument, we need
 # to make argh think the function accepts a namespace as its
 # only argument, with all arguments being specified through the
 # arg decorator. Using a namespace is also what allows us to
 # treat keyword arguments as optional positional arguments, so
 # all functions are wrapped by expects_obj and then
 # _with_namespace.
 accepts_app = 'app' in spec.args
 function = _with_namespace(expects_obj(function), accepts_app)

 with suppress(ValueError):
 # Remove app from the list of arguments so that it doesn't
 # get registered twice.
 spec.args.remove('app')

 # Associate values with keyword arguments.
 if not spec.defaults:
 # None isn't iterable.
 defaults = {}
 else:
 defaults = dict(zip(
 spec.args[-len(spec.defaults):],
 spec.defaults))

 # Keyword-only arguments are exposed to the command line as
 # optional arguments. By default two flags are available for
 # each: an abbreviated name (the first character) and a full
 # name (with dashes instead of underscores). If two arguments
 # share the same first letter, however, the abbreviated flags
 # won't be used for them.
 conflicts = Counter(a[0] for a in spec.kwonlyargs)
 conflicts = tuple(k for k, v in conflicts.items() if v > 1)

 # Iterate over the rest of the arguments. Positional and keyword
 # arguments are combined by inspect, but keyword-only arguments
 # are separate. They all need to be combined so that they can be
 # iterated over in reverse order. The reverse is needed to
 # retain the order of positional arguments as specified by the
 # function's signature.
 arguments = spec.args + spec.kwonlyargs

 # Set up the keyword argument overrides.
 func_kwargs = deepcopy(func_kwargs)

 # First, check for verbosity-related arguments since those are
 # handled in a special way. Remove any that are found from the
 # list of all arguments so they aren't processed again later.
 if any(arg in arguments for arg in ('quiet', 'verbose')):
 if 'quiet' not in arguments:
 # Add just the verbose argument.
 decorator = arg(
 '--verbose', '-v', action='count', help='verbose mode')
 function = decorator(function)
 elif 'verbose' not in arguments:
 # Add just the quiet argument.
 decorator = arg(
 '--quiet', '-q', action='count', help='quiet mode')
 function = decorator(function)
 else:
 # Add the mutually exclusive group (through parent).
 func_kwargs['parents'] = [parent]

 with suppress(ValueError):
 arguments.remove('verbose')
 with suppress(ValueError):
 arguments.remove('quiet')

 for argument in reversed(arguments):
 kwargs = {}
 if argument in spec.kwonlyargs:
 # Treat keyword-only arguments as optional arguments.
 kwargs['default'] = spec.kwonlydefaults[argument]
 flags = (
 '-{0}'.format(argument[0]),
 '--{0}'.format(argument).replace('_', '-'),
)
 if argument.startswith(conflicts):
 flags = flags[1:]
 else:
 # Treat all other arguments as positional arguments.
 # Keyword arguments will be handled as positional
 # arguments with default values.
 with suppress(KeyError):
 # The argument will only be included in defaults
 # for keyword arguments.
 kwargs['default'] = defaults[argument]
 kwargs['nargs'] = '?'

 # The argument's name is replaced by a list of flags for
 # keyword-only arguments. Simulate that here so that the
 # same call to arg can be used for all arguments.
 flags = [argument]

 with suppress(KeyError):
 kwargs['help'] = spec.annotations[argument]

 function = arg(*flags, **kwargs)(function)

 # Add the function to the list of commands to add to the parser.
 commands.append(function)

 parser.add_commands(
 namespace=namespace,
 functions=commands,
 namespace_kwargs=namespace_kwargs,
 func_kwargs=func_kwargs,
)

def run(application_path: 'the path to the application to run',
 reloader: 'reload the application on changes' = False,
 workers: 'the number of asynchronous tasks to run' = 1,
 debug: 'enable debug mode' = False,
 **kwargs):
 """Import and run an application."""
 if kwargs['quiet']:
 # If quiet mode has been enabled, set the number of verbose
 # flags to -1 so that the level above warning will be used.
 verbosity = -1
 else:
 # argparse gives None not 0.
 verbosity = kwargs['verbose'] or 0

 # Set the log level based on the number of verbose flags. Do this
 # before the app is imported so any log calls made will respect the
 # specified level.
 log_level = logging.WARNING - (verbosity * 10)
 logging.basicConfig(level=log_level)

 import_path, app = _import_application(application_path)

 # Now that we have an application, set it's log level, too.
 app.logger.setLevel(log_level)

 if reloader or debug:
 # If the reloader is requested (or debug is enabled), create
 # threads for running the application and watching the file
 # system for changes.
 app.logger.info('Running {!r} with reloader...'.format(app))

 # Find the root of the application and watch for changes
 watchdir = os.path.abspath(import_module(import_path).__file__)
 for _ in import_path.split('.'):
 watchdir = os.path.dirname(watchdir)

 # Create observer and runner threads
 observer = Observer()
 loop = asyncio.new_event_loop()
 runner = Thread(
 target=app.run_forever,
 kwargs={'num_workers': workers, 'loop': loop, 'debug': debug},
)

 # This function is called by watchdog event handler when changes
 # are detected by the observers
 def restart_process(event):
 """Restart the process in-place."""
 os.execv(sys.executable, [sys.executable] + sys.argv[:])

 # Create the handler and watch the files
 handler = PatternMatchingEventHandler(
 patterns=['*.py', '*.ini'],
 ignore_directories=True,
)
 handler.on_any_event = restart_process
 observer.schedule(handler, watchdir, recursive=True)

 # Start running everything
 runner.start()
 observer.start()

 else:
 # If the reloader is not needed, avoid the overhead
 app.logger.info('Running {!r} forever...'.format(app))
 app.run_forever(num_workers=workers, debug=debug)

class _ApplicationAction(Action):
 """A custom action to import an application."""

 def __call__(self, parser, namespace, values, option_string=None):
 _, application = _import_application(values)
 setattr(namespace, self.dest, application)

def main():
 """Dispatch the CLI command to the target function."""
 return parser.dispatch()

def _import_application(application_path):
 """Return the imported application and the path to it.

 Args:
 application_path (str): The path to use to import the
 application. It should be in the form of ``PATH[:APP]``.

 Returns:
 Tuple[str, henson.base.Application]: A two-tuple containing the
 import path and the imported application.
 """
 # Add the present working directory to the import path so that
 # services can be found without installing them to site-packages
 # or modifying PYTHONPATH
 sys.path.insert(0, '.')

 # First, find the module that should be imported
 application_path_parts = application_path.split(':', 1)
 import_path = application_path_parts.pop(0)

 # Then, try to find an import loader for the import_path
 # NOTE: this is to handle the case where a module is found but not
 # importable because of dependency import errors (Python 3 only)
 if not find_loader(import_path):
 raise CommandError(
 'Unable to find an import loader for {}.'.format(import_path),
)

 # Once found, import the module and handle any dependency errors
 # TODO: Wrap the ImportError raised here to provide more meaningful
 # error messages to the end user
 module = import_module(import_path)

 # If an application name is specified, use that to select the
 # application instance
 try:
 app_name = application_path_parts.pop()
 # TODO: Wrap the AttributeError raised here to provide more
 # meaningful error messages to the end user
 app = getattr(module, app_name)
 # If the attribute specified by app_name is a callable, assume
 # it is an application factory and call it to get an instance of
 # a Henson application.
 if callable(app):
 app = app()
 # Fail if the attribute specified is not a Henson application
 if not isinstance(app, Application):
 raise CommandError(
 'app must be an instance of a Henson application. '
 'Got {}'.format(type(app)),
)

 # If no application name is specified, try to automatically select
 # the correct module attribute based on type
 except IndexError:
 app_candidates = []
 for name in dir(module):
 attr = getattr(module, name)
 if isinstance(attr, Application):
 app_candidates.append((name, attr))

 # If there are zero app_candidates, there's nothing to run.
 if not app_candidates:
 raise CommandError(
 'No Henson application found. Please specify the '
 'application by name or run a different module.',
)

 # If there are more than one, the choice of which app to run is
 # ambiguous.
 if len(app_candidates) > 1:
 raise CommandError(
 'More than one Henson application found in {}. Please '
 'specify a application by name (probably one of [{}]).'.format(
 import_path, ', '.join(ac[0] for ac in app_candidates)),
)

 app_name, app = app_candidates[0]

 return import_path, app

def _with_namespace(f, include_app):
 """Call the function with the parsed arguments."""
 @wraps(f)
 def inner(parsed_args):
 parsed_args = vars(parsed_args)
 parsed_args.pop('_functions_stack', None)
 if not include_app:
 parsed_args.pop('app')
 return f(**parsed_args)
 return inner

Create a parent group so that arguments such as --verbose can be added
to all commands.
parent = ArghParser(add_help=False)

Create a mutually exclusive group to control the verbosity. verbose
and quiet will be provided under kwargs.
chatter = parent.add_mutually_exclusive_group()
chatter.add_argument('--verbose', '-v', action='count', help='verbose mode')
chatter.add_argument('--quiet', '-q', action='count', help='quiet mode')

Define a parser and add commands to it.
parser = ArghParser()
parser.add_argument('--version', action='version', version=__version__)

Add an argument to import an application to load its CLI extensions.
parser.add_argument(
 '-a', '--app',
 action=_ApplicationAction,
 help='the path to the application to run',
)

parser.add_commands([run], func_kwargs={'parents': [parent]})

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_modules/henson/contrib/sphinx.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.contrib.sphinx

"""Sphinx contrib plugin for documenting Henson CLI extensions."""

from sphinxcontrib.autoprogram import AutoprogramDirective

def _import_extension(import_path):
 module_name, extension_name = import_path.split(':', 1)
 module = __import__(module_name, None, None, [extension_name])
 return getattr(module, extension_name)

[docs]class HensonCLIDirective(AutoprogramDirective):
 """A Sphinx directive that can be used to document a CLI extension.

 This class wraps around
 `autoprogram <https://pythonhosted.org/sphinxcontrib-autoprogram/>`_
 to generate Sphinx documentation for extensions that extend the
 Henson CLI.

 .. code::

 .. hensoncli:: henson_database:Database
 :start_command: db

 .. versionadded:: 1.1.0
 """

 def prepare_autoprogram(self):
 """Prepare the instance to be run through autoprogram."""
 # Tell autoprogram how to find the argument parser.
 self.arguments = 'henson.cli:parser',

 def register_cli(self):
 """Register the CLI."""
 import_path, = self.arguments
 extension = _import_extension(import_path)
 extension().register_cli()

 def run(self):
 """Register the CLI and run autoprogram."""
 self.register_cli()
 self.prepare_autoprogram()

 return super().run()

def setup(app):
 """Register the extension."""
 app.add_directive('hensoncli', HensonCLIDirective)

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_static/up.png

_modules/henson/contrib/retry.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.contrib.retry

"""Retry plugin for Henson.

Retry is a plugin to add the ability for Henson to automatically retry
messages that fail to process.
"""

import asyncio
import time

from henson.exceptions import Abort
from henson.extensions import Extension

__all__ = ('Retry', 'RetryableException')

def _calculate_delay(delay, backoff, number_of_retries):
 """Return the time to wait before retrying.

 Args:
 delay (numbers.Number): The base amount of time, in seconds, by
 which to delay the retry.
 backoff (numbers.Number): The factor by which each retry should
 be extended.
 number_of_retries (int): The number of retry attempts already
 made.

 Returns:
 numbers.Number: The amount of time to wait.
 """
 backoff_factor = backoff ** number_of_retries
 return delay * backoff_factor

def _exceeded_threshold(number_of_retries, maximum_retries):
 """Return True if the number of retries has been exceeded.

 Args:
 number_of_retries (int): The number of retry attempts made
 already.
 maximum_retries (int): The maximum number of retry attempts to
 make.

 Returns:
 bool: True if the maximum number of retry attempts have already
 been made.
 """
 if maximum_retries is None:
 # Retry forever.
 return False

 return number_of_retries >= maximum_retries

def _exceeded_timeout(start_time, duration):
 """Return True if the timeout has been exceeded.

 Args:
 start_time (int): The timestamp of the first retry attempt.
 duration (int): The total number of seconds to retry for.

 Returns:
 bool: True if the timeout has passed.
 """
 if duration is None:
 # Retry forever.
 return False

 # Duration is in seconds, not milliseconds like start_time.
 return start_time + (duration * 1000) <= int(time.time())

@asyncio.coroutine
def _retry(app, message, exc):
 """Retry the message.

 An exception that is included as a retryable type will result in the
 message being retried so long as the threshold and timeout haven't
 been reached.

 Args:
 app (henson.base.Application): The current application.
 message (dict): The message to be retried.
 exc (Exception): The exception that caused processing the
 message to fail.

 Raises:
 Abort: If the message is scheduled to be retried.
 """
 if not isinstance(exc, app.settings['RETRY_EXCEPTIONS']):
 # If the exception raised isn't retryable, return control so the
 # next error callback can be called.
 return

 retry_info = _retry_info(message)

 threshold = app.settings['RETRY_THRESHOLD']
 if _exceeded_threshold(retry_info['count'], threshold):
 # If we've exceeded the number of times to retry the message,
 # don't retry it again.
 return

 timeout = app.settings['RETRY_TIMEOUT']
 if _exceeded_timeout(retry_info['start_time'], timeout):
 # If we've gone past the time to stop retrying, don't retry it
 # again.
 return

 if app.settings['RETRY_DELAY']:
 # If a delay has been specified, calculate the actual delay
 # based on any backoff and then sleep for that long. Add the
 # delay time to the retry information so that it can be used
 # to gain insight into the full history of a retried message.
 retry_info['delay'] = _calculate_delay(
 delay=app.settings['RETRY_DELAY'],
 backoff=app.settings['RETRY_BACKOFF'],
 number_of_retries=retry_info['count'],
)
 yield from asyncio.sleep(retry_info['delay'])

 # Update the retry information and retry the message.
 retry_info['count'] += 1
 message['_retry'] = retry_info
 yield from app.settings['RETRY_CALLBACK'](app, message)

 # If the exception was retryable, none of the other callbacks should
 # execute.
 raise Abort('message.retried', message)

def _retry_info(message):
 """Return the retry attempt information.

 Args:
 message (dict): The message to be retried.

 Returns:
 dict: The retry attempt information.
 """
 info = message.get('_retry', {})
 info.setdefault('count', 0)
 info.setdefault('start_time', int(time.time()))
 return info

[docs]class RetryableException(Exception):
 """Exception to be raised when a message should be retried."""

[docs]class Retry(Extension):
 """A class that adds retries to an application."""

 DEFAULT_SETTINGS = {
 'RETRY_BACKOFF': 1,
 'RETRY_DELAY': 0,
 'RETRY_EXCEPTIONS': RetryableException,
 'RETRY_THRESHOLD': None,
 'RETRY_TIMEOUT': None,
 }

 REQUIRED_SETTINGS = (
 'RETRY_CALLBACK',
)

[docs] def init_app(self, app):
 """Initialize an ``Application`` instance.

 Args:
 app (henson.base.Application): Application instance to be
 initialized.

 Raises:
 TypeError: If the callback isn't a coroutine.
 ValueError: If the delay or backoff is negative.
 """
 super().init_app(app)

 if app.settings['RETRY_DELAY'] < 0:
 raise ValueError('The delay cannot be negative.')

 if app.settings['RETRY_BACKOFF'] < 0:
 raise ValueError('The backoff cannot be negative.')

 if not asyncio.iscoroutinefunction(app.settings['RETRY_CALLBACK']):
 raise TypeError('The retry callback is not a coroutine.')

 # The retry callback should be executed before all other
 # callbacks. This will ensure that retryable exceptions are
 # retried.
 app._callbacks['error'].insert(0, _retry)

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_modules/henson/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.exceptions

"""Custom exceptions used by Henson."""

__all__ = ('Abort',)

[docs]class Abort(Exception):
 """An exception that signals to Henson to stop processing a message.

 When this exception is caught by Henson it will immediately stop
 processing the message. None of the remaining callbacks will be
 called.

 If the exception is caught while processing a result, that result
 will no longer be processed. Any other results generated by the same
 message will still be processed.

 Args:
 reason (str): The reason the message is being aborted. It should
 be in the form of "noun.verb" (e.g., "provider.ignored").
 message: The message that is being aborted. Usually this will be
 the incoming message, but it can also be the result.
 """

 def __init__(self, reason, message):
 """Initialize the class."""
 super().__init__(reason)
 self.message = message

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_modules/henson/extensions.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.extensions

"""Extension base."""

__all__ = ('Extension',)

[docs]class Extension:
 """A base class for Hension extensions.

 Args:
 app (Optional[henson.base.Application]): An application instance
 that has an attribute named settings that contains a mapping
 of settings to interact with a database.
 """

 def __init__(self, app=None):
 """Initialize an instance of the extension.

 If app is provided, init_app will also be called with the
 provided application. Otherwise, init_app must be called with an
 application explicitly before the extension's reference to an
 application is usable.

 Args:
 app (Optional[henson.base.Application]): An application
 instance that will be initialized.
 """
 self._app = None

 if app:
 self.init_app(app)

 @property
 def DEFAULT_SETTINGS(self): # NOQA
 """A ``dict`` of default settings for the extension.

 When a setting is not specified by the application instance and
 has a default specified, the default value will be used.
 Extensions should define this where appropriate. Defaults to
 ``{}``.
 """
 return {}

 @property
 def REQUIRED_SETTINGS(self): # NOQA
 """An ``iterable`` of required settings for the extension.

 When an extension has required settings that do not have default
 values, their keys may be specified here. Upon extension
 initialization, an exception will be raised if a value is not
 set for each key specified in this list. Extensions should
 define this where appropriate. Defaults to ``()``.
 """
 return ()

[docs] def init_app(self, app):
 """Initialize the application.

 In addition to associating the extension's default settings with
 the application, this method will also check for the extension's
 required settings.

 Args:
 app (henson.base.Application): An application instance that
 will be initialized.
 """
 for key, value in self.DEFAULT_SETTINGS.items():
 app.settings.setdefault(key, value)

 required_settings = set(self.REQUIRED_SETTINGS)
 current_settings = set(app.settings.keys())
 missing_settings = required_settings - current_settings
 if missing_settings:
 raise KeyError(
 '{} requires the following missing settings: {}'.format(
 self.__class__.__name__,
 ', '.join(str(key) for key in missing_settings),
)
)

 if hasattr(self, 'register_cli'):
 self.register_cli()

 self._app = app
 self._app.extensions[self.__class__.__name__.lower()] = self

 @property
 def app(self):
 """Return the registered app."""
 if not self._app:
 raise RuntimeError(
 'No application has been assigned to this instance. '
 'init_app must be called before referencing instance.app.')
 return self._app

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_static/logo.png

_static/file.png

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 All modules for which code is available

		henson.base

		henson.cli

		henson.config

		henson.contrib.retry

		henson.contrib.sphinx

		henson.exceptions

		henson.extensions

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_modules/henson/base.html

 Navigation

 		
 index

 		
 modules |

 		Henson 1.1.0 documentation »

 		Module code »

 Source code for henson.base

"""Implementation of the service."""

import asyncio
from contextlib import suppress
from copy import deepcopy
import logging
import sys
import traceback

from .config import Config
from .exceptions import Abort

__all__ = ('Application',)

[docs]class Application:
 """A service application.

 Each message received from the consumer will be passed to the
 callback.

 Args:
 name (str): The name of the application.
 settings (Optional[object]): An object with attributed-based
 settings.
 consumer (optional): Any object that is an iterator or an
 iterable and yields instances of any type that is supported
 by ``callback``. While this isn't required, it must be
 provided before the application can be run.
 callback (Optional[asyncio.coroutine]): A callable object that
 takes two arguments, an instance of
 :class:`henson.base.Application` and the (possibly)
 preprocessed incoming message. While this isn't required,
 it must be provided before the application can be run.
 """

 def __init__(self, name, settings=None, *, consumer=None, callback=None):
 """Initialize the class."""
 self.name = name

 # Configuration
 self.settings = Config()
 self.settings.from_object(settings or {})
 self.settings.setdefault('DEBUG', False)
 self.settings.setdefault('SLEEP_TIME', 0.1)

 # Callbacks
 self.callback = callback
 self._callbacks = {
 'error': [],
 'message_acknowledgement': [],
 'message_preprocessor': [],
 'result_postprocessor': [],
 'startup': [],
 'teardown': [],
 }

 self.extensions = {}

 self.consumer = consumer

 self.logger = logging.getLogger(self.name)

 def __str__(self):
 return self.name

 def __repr__(self):
 return '<Application: {}>'.format(self)

[docs] def error(self, callback):
 """Register an error callback.

 Args:
 callback (asyncio.coroutine): A callable object that takes
 three arguments: an instance of
 :class:`henson.base.Application`, the incoming message,
 and the exception that was raised. It will be called any
 time there is an exception while reading a message from
 the queue.

 Returns:
 asyncio.coroutine: The callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 self._register_callback(callback, 'error')
 return callback

[docs] def message_acknowledgement(self, callback):
 """Register a message acknowledgement callback.

 Args:
 callback (asyncio.coroutine): A callable object that takes
 two arguments: an instance of
 :class:`henson.base.Application` and the original
 incoming message as its only argument. It will be called
 once a message has been fully processed.

 Returns:
 asyncio.coroutine: The callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 self._register_callback(callback, 'message_acknowledgement')
 return callback

[docs] def message_preprocessor(self, callback):
 """Register a message preprocessing callback.

 Args:
 callback (asyncio.coroutine): A callable object that takes
 two arguments: an instance of
 :class:`henson.base.Application` and the incoming
 message. It will be called for each incoming message
 with its result being passed to ``callback``.

 Returns:
 asyncio.coroutine: The callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 self._register_callback(callback, 'message_preprocessor')
 return callback

[docs] def result_postprocessor(self, callback):
 """Register a result postprocessing callback.

 Args:
 callback (asyncio.coroutine): A callable object that takes
 two arguments: an instance of
 :class:`henson.base.Application` and a result of
 processing the incoming message. It will be called for
 each result returned from ``callback``.

 Returns:
 asyncio.coroutine: The callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 self._register_callback(callback, 'result_postprocessor')
 return callback

[docs] def run_forever(self, num_workers=1, loop=None, debug=False):
 """Consume from the consumer until interrupted.

 Args:
 num_workers (Optional[int]): The number of asynchronous
 tasks to use to process messages received through the
 consumer. Defaults to 1.
 loop (Optional[asyncio.asyncio.BaseEventLoop]): An event
 loop that, if provided, will be used for running the
 application. If none is provided, the default event loop
 will be used.
 debug (Optional[bool]): Whether or not to run with debug
 mode enabled. Defaults to True.

 Raises:
 TypeError: If the consumer is None or the callback isn't a
 coroutine.
 """
 if self.consumer is None:
 raise TypeError("The Application's consumer cannot be None.")

 if not asyncio.iscoroutinefunction(self.callback):
 raise TypeError("The Application's callback must be a coroutine.")

 # Use the specified event loop, otherwise use the default one.
 loop = loop or _new_event_loop()
 asyncio.set_event_loop(loop)

 # Start the application.
 tasks = [
 asyncio.async(callback(self), loop=loop) for callback in
 self._callbacks['startup']
]
 future = asyncio.gather(*tasks, loop=loop)
 loop.run_until_complete(future)

 # The following debug mode checks are intentionally separate.
 # Using a check of `if debug or self.settings['DEBUG']` would
 # accomplish the same thing but wouldn't respect the
 # PYTHONASYNCIODEBUG environment variable.
 if debug:
 # Set the application's debug mode to true if run_forever
 # was called with debug enabled.
 self.settings['DEBUG'] = True
 if self.settings['DEBUG']:
 # If the application is running in debug mode, enable it for
 # the loop and set the logger to DEBUG. If, however, the
 # log level was set to something lower than DEBUG, don't
 # change it.
 loop.set_debug(True)
 self.logger.setLevel(min(self.logger.level, logging.DEBUG))

 self.logger.debug('application.started')

 # Create an asynchronous queue to pass the messages from the
 # consumer to the processor. The queue should hold one message
 # for each processing task.
 queue = asyncio.Queue(maxsize=num_workers, loop=loop)

 # Create a future to control consumption and create a task for
 # the consumer to run in.
 consumer = asyncio.Future(loop=loop)
 loop.create_task(self._consume(queue, consumer))

 # Create tasks to process each message received by the
 # consumer and wrap them inside a future. When the loop stops
 # running it should be restarted and wait until the future is
 # done.
 tasks = [
 asyncio.async(self._process(consumer, queue, loop), loop=loop)
 for _ in range(num_workers)
]
 future = asyncio.gather(*tasks, loop=loop)

 try:
 # Run the loop until the consumer says to stop.
 loop.run_until_complete(consumer)
 except BaseException as e:
 self.logger.error(e)

 # If something went wrong, cancel the consumer. This will
 # alert the processors to stop once the queue is empty.
 consumer.cancel()
 finally:
 # Run the loop until the future completes. This will allow
 # the tasks to finish processing all of the messages in the
 # queue and then exit cleanly.
 loop.run_until_complete(future)

 # Check for any exceptions that may have been raised by the
 # tasks inside the future.
 exc = future.exception()
 if exc:
 self.logger.error(exc)

 # Teardown
 tasks = [
 asyncio.async(callback(self), loop=loop) for callback in
 self._callbacks['teardown']
]
 future = asyncio.gather(*tasks, loop=loop)
 loop.run_until_complete(future)

 # Clean up after ourselves.
 loop.close()

 self.logger.debug('application.stopped')

[docs] def startup(self, callback):
 """Register a startup callback.

 Args:
 callback (asyncio.coroutine): A callable object that takes
 an instance of :class:`~henson.base.Application` as its
 only argument. It will be called once when the
 application first starts up.

 Returns:
 asyncio.coroutine: The callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 self._register_callback(callback, 'startup')
 return callback

[docs] def teardown(self, callback):
 """Register a teardown callback.

 Args:
 callback (asyncio.coroutine): A callable object that takes
 an instance of :class:`~henson.base.Application` as its
 only argument. It will be called once when the
 application is shutting down.

 Returns:
 asyncio.coroutine: The callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 self._register_callback(callback, 'teardown')
 return callback

 @asyncio.coroutine
 def _abort(self, exc):
 """Log the aborted message.

 Args:
 exc (henson.exceptions.Abort): The exception to be logged.
 """
 tb = sys.exc_info()[-1]
 stack = traceback.extract_tb(tb, 1)[-1]
 self.logger.debug('callback.aborted', extra={
 'exception': exc,
 'exception_message': exc.message,
 'aborted_by': stack,
 })

 @asyncio.coroutine
 def _apply_callbacks(self, callbacks, value):
 """Apply callbacks to a set of arguments.

 The callbacks will be called in the order in which they are
 specified, with the return value of each being passed to the
 next callback.

 Args:
 callbacks (List[callable]): The callbacks to apply to the
 provided arguments.
 value: The value to pass to the first callback.

 Returns:
 The return value of the final callback.
 """
 for callback in callbacks:
 value = yield from callback(self, value)
 return value

 @asyncio.coroutine
 def _consume(self, queue, future):
 """Read in incoming messages.

 Messages will be read from the consumer until it raises an
 :class:`~henson.exceptions.Abort` exception.

 Args:
 queue (asyncio.Queue): Any messages read in by the consumer
 will be added to the queue to share them with any future
 processing the messages.
 future (asyncio.Future): When the consumer tells the
 application to stop, this future will be cancelled.
 """
 while True:
 # Read messages and add them to the queue.
 try:
 value = yield from self.consumer.read()
 except Abort:
 self.logger.debug('consumer.aborted')
 future.cancel()
 return
 except Exception as e:
 # If the consumer fails, set the exception on the future
 # so that the loop will stop running and the application
 # will shut down.
 future.set_exception(e)
 else:
 yield from queue.put(value)

 @asyncio.coroutine
 def _process(self, future, queue, loop):
 """Process incoming messages.

 Args:
 future (asyncio.Future): The future that, when done, will
 indicate that the consumer is no longer receiving new
 messages.
 queue (asyncio.Queue): A queue containing incoming messages
 to be processed.
 loop (asyncio.asyncio.BaseEventLoop): The event loop used by
 the application.
 """
 while True:
 if queue.empty():
 # If there aren't any messages in the queue, check to
 # see if the consumer is done. If it is, exit.
 # Otherwise yield control back to the event loop and
 # then try again.
 if future.done():
 break

 yield from asyncio.sleep(
 self.settings['SLEEP_TIME'], loop=loop)
 continue

 message = yield from queue.get()
 # Save a copy of the original message in case its needed
 # later.
 original_message = deepcopy(message)

 try:
 message = yield from self._apply_callbacks(
 self._callbacks['message_preprocessor'], message)
 self.logger.debug('message.preprocessed')

 results = yield from self.callback(self, message)
 except Abort as e:
 yield from self._abort(e)
 except Exception as e:
 self.logger.error('message.failed', exc_info=sys.exc_info())

 for callback in self._callbacks['error']:
 # Any callback can prevent execution of further
 # callbacks by raising Abort.
 try:
 yield from callback(self, message, e)
 except Abort:
 break
 else:
 yield from self._postprocess_results(results)
 finally:
 # Don't use _apply_callbacks here since we want to pass
 # the original message into each callback.
 for callback in self._callbacks['message_acknowledgement']:
 yield from callback(self, original_message)
 self.logger.debug('message.acknowledged')

 # If there are no new messages in the queue, _process
 # won't reassign the variables that it uses to track the
 # message and its results. This will cause the memory to
 # stay allocated longer than the application needs it.
 # By destroying the references to the objects that are
 # no longer needed, the memory can be freed up for other
 # things to use.
 with suppress(UnboundLocalError):
 # If an exception was raised, results may not have
 # been set.
 del results
 del message
 del original_message

 @asyncio.coroutine
 def _postprocess_results(self, results):
 """Postprocess the results.

 Args:
 results (iterable): The results returned by processing the
 message.
 """
 if results is None:
 return

 for result in results:
 try:
 yield from self._apply_callbacks(
 self._callbacks['result_postprocessor'], result)
 self.logger.debug('result.postprocessed')
 except Abort as e:
 yield from self._abort(e)

 def _register_callback(self, callback, callback_container):
 """Register a callback.

 Args:
 callback (asyncio.coroutine): The callback to register.
 callback_container (str): The name of the container onto
 which to append the callback.

 Raises:
 TypeError: If the callback isn't a coroutine.
 """
 if not asyncio.iscoroutinefunction(callback):
 raise TypeError('The callback must be a coroutine.')

 self._callbacks[callback_container].append(callback)

 self.logger.debug('callback.registered', extra={
 'type': callback_container,
 'callback': callback.__qualname__,
 })

 def _teardown(self, future, loop):
 """Tear down the application."""
 tasks = [
 asyncio.async(callback(self), loop=loop) for callback in
 self._callbacks['teardown']]
 future = asyncio.gather(*tasks, loop=loop)
 loop.run_until_complete(future)

def _new_event_loop():
 """Return a new event loop.

 If `uvloop <https://uvloop.readthedocs.io>`_ is installed, its event
 loop will be used. Otherwise, the default event loop provided by
 asyncio will be used. The latter behavior can be overridden by
 setting the event loop policy.

 Returns:
 asyncio.AbstractEventLoopPolicy: The new event loop.
 """
 try:
 import uvloop
 except ImportError:
 return asyncio.new_event_loop()
 else:
 return uvloop.new_event_loop()

 © Copyright 2015-2016, iHeartRadio.
 Created using Sphinx 1.3.5.

